@Article{CiCP-4-5, author = {}, title = {A Scalable Domain Decomposition Method for Ultra-Parallel Arterial Flow Simulations}, journal = {Communications in Computational Physics}, year = {2008}, volume = {4}, number = {5}, pages = {1151--1169}, abstract = {

Ultra-parallel flow simulations on hundreds of thousands of processors require new multi-level domain decomposition methods. Here we present such a new two-level method that has features both of discontinuous and continuous Galerkin formulations. Specifically, at the coarse level the domain is subdivided into several big patches and within each patch a spectral element discretization (fine level) is employed. New interface conditions for the Navier-Stokes equations are developed to connect the patches, relaxing the C0continuity and minimizing data transfer at the patch interface. We perform several 3D flow simulations of a benchmark problem and of arterial flows to evaluate the performance of the new method and investigate its accuracy.

}, issn = {1991-7120}, doi = {https://doi.org/2008-CiCP-7832}, url = {https://global-sci.com/article/81297/a-scalable-domain-decomposition-method-for-ultra-parallel-arterial-flow-simulations} }