@Article{CMR-35-2, author = {Yang, Liu}, title = {Holomorphic Curves into ${\mathbb P}^N({\bf C})$ That Share a Set of Moving Hypersurfaces}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {35}, number = {2}, pages = {97--105}, abstract = {
Let ${\cal F}$ be a family of holomorphic curves of a domain $D$ in ${\bf C}$ into a closed subset $X$ in ${\mathbb P}^N(\bf C)$. Let $Q_1(z),\,\cdots,\,Q_{2t+1}(z)$ be moving hypersurfaces in ${\mathbb P}^N(\bf C)$ located in pointwise $t$-subgeneral position with respect to $X$. If each pair of curves $f$ and $g$ in ${\cal F}$ share the set $\{Q_1(z),\,\cdots,\,Q_{2t+1}(z)\}$, then ${\cal F}$ is normal on $D$. This result greatly extend some earlier theorems related to Montel's criterion.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.02.01}, url = {https://global-sci.com/article/81553/holomorphic-curves-into-mathbb-pnbf-c-that-share-a-set-of-moving-hypersurfaces} }