@Article{CMR-35-3, author = {Shengjiang, Chen and Xu, Aizhu and Xiuqing, Lin}, title = {Further Results on Meromorphic Functions and Their $n$th Order Exact Differences with Three Shared Values}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {35}, number = {3}, pages = {283--288}, abstract = {

Let $E(a,\,f)$ be the set of $a$-points of a meromorphic function $f(z)$ counting multiplicities. We prove that if a transcendental meromorphic function $f(z)$ of hyper order strictly less than 1 and its $n$th exact difference $\Delta_c^nf(z)$ satisfy $E(1,\,f)=E(1,\,\Delta_c^nf)$, $E(0,\,f)\subset E(0,\,\Delta_c^nf)$ and $E(\infty,\,f)\supset E(\infty,\,\Delta_c^nf)$, then $\Delta_c^nf(z)\equiv f(z)$. This result improves a more recent theorem due to Gao et al. (Gao Z, Kornonen R, Zhang J, Zhang Y. Uniqueness of meromorphic functions sharing values with their $n$th order exact differences. Analysis Math., 2018, https://doi.org/10.1007/s10476018-0605-2) by using a simple method. 

}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.03.09}, url = {https://global-sci.com/article/81569/further-results-on-meromorphic-functions-and-their-nth-order-exact-differences-with-three-shared-values} }