@Article{CMR-30-4, author = {Yong, Jin and Hongbo, Guo}, title = {The Dependence Problem for a Class of Polynomial Maps in Dimension Four}, journal = {Communications in Mathematical Research }, year = {2014}, volume = {30}, number = {4}, pages = {289--294}, abstract = {

Let $h$ be a polynomial in four variables with the singular Hessian $\mathcal{H}h$ and the gradient $∇h$ and $R$ be a nonzero relation of $∇h$. Set $H = ∇R(∇h)$. We prove that the components of $H$ are linearly dependent when $rk\mathcal{H}h ≤ 2$ and give a necessary and sufficient condition for the components of $H$ to be linearly dependent when $rk\mathcal{H}h = 3$.

}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2014.04.01}, url = {https://global-sci.com/article/81763/the-dependence-problem-for-a-class-of-polynomial-maps-in-dimension-four} }