@Article{CMR-29-2, author = {Yueming, Xiang}, title = {$PS$-Injective Modules, $PS$-Flat Modules and $PS$-Coherent Rings}, journal = {Communications in Mathematical Research }, year = {2013}, volume = {29}, number = {2}, pages = {121--130}, abstract = {

A left ideal $I$ of a ring $R$ is small in case for every proper left ideal $K$ of $R, K +I ≠ R$. A ring $R$ is called left $PS$-coherent if every principally small left ideal $Ra$ is finitely presented. We develop, in this paper, $PS$-coherent rings as a generalization of $P$-coherent rings and $J$-coherent rings. To characterize $PS$-coherent rings, we first introduce $PS$-injective and $PS$-flat modules, and discuss the relation between them over some spacial rings. Some properties of left $PS$-coherent rings are also studied.

}, issn = {2707-8523}, doi = {https://doi.org/2013-CMR-19015}, url = {https://global-sci.com/article/81784/ps-injective-modules-ps-flat-modules-and-ps-coherent-rings} }