@Article{EAJAM-14-1, author = {Yan, Xue-Wei and Yong, Chen and Tian, Shou-Fu and Xiu-Bin, Wang}, title = {Multi-Breather, Rogue Wave and Multi-Bright-Dark Soliton Interaction of the (2+1)-Dimensional Nonlocal Fokas System}, journal = {East Asian Journal on Applied Mathematics}, year = {2024}, volume = {14}, number = {1}, pages = {1--23}, abstract = {

We study the (2+1)-dimensional nonlocal Fokas system by using the Hirota’s bilinear method. Firstly, a general tau-function of Kadomtsev-Petviashvili (KP) hierarchy satisfied with the bilinear equation under nonzero boundary condition is derived by considering differential relations and a variable transformation. Secondly, two Gram-type solutions are utilized to the construction of multi-breather, high-order rogue wave, and multi-bright-dark soliton solutions. Then the corresponding parameter restrictions of these solutions are given to satisfy with the complex conjugation symmetry. Furthermore, we find that if the parameter $p_{iI}$ takes different values, the rogue wave solution can be classified as three types of states, such as dark-dark, four-peak and bright-bright high-order rogue wave. If the parameter $c_i$ takes different values, the soliton solution can be classified as three type of states, including the multi-dark, multi-bright-dark and multi-bright solitons. By considering third-type of reduced tau-function to the Hirota’s bilinear equations, we give the collisions between the high-order rogue wave and the multi-bright-dark solitons on constant ($N$ is positive even) or periodic background ($N$ is positive odd). In order to understand the dynamics behaviors of the obtained solutions better, the various rich patterns are theoretically and graphically analyzed in detail.

}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.2022-258.300123}, url = {https://global-sci.com/article/82396/multi-breather-rogue-wave-and-multi-bright-dark-soliton-interaction-of-the-21-dimensional-nonlocal-fokas-system} }