@Article{IJNAM-18-3, author = {Zhang, Weiwei and Long, Hu and Zongze, Yang and Yufeng, Nie}, title = {Error Estimates for the Laplace Interpolation on Convex Polygons}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2021}, volume = {18}, number = {3}, pages = {324--338}, abstract = {
In the natural element method (NEM), the Laplace interpolation error estimate on
convex planar polygons is proved in this study. The proof is based on bounding gradients of the
Laplace interpolation for convex polygons which satisfy certain geometric requirements, and has
been divided into several parts that each part is bounded by a constant. Under the given geometric
assumptions, the optimal convergence estimate is obtained. This work provides the mathematical
analysis theory of the NEM. Some numerical examples are selected to verify our theoretical result.