@Article{IJNAM-17-6, author = {Xiaoliang, Cheng and Xilu, Wang}, title = {Numerical Analysis of a History-Dependent Variational-Hemivariational Inequality for a Viscoplastic Contact Problem}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2020}, volume = {17}, number = {6}, pages = {820--838}, abstract = {

In this paper, we consider a mathematical model which describes the quasistatic frictionless contact between a viscoplastic body and a foundation. The contact is modeled with normal compliance and unilateral constraint. We present the variational-hemivariational formulation of the model and prove its unique solvability. Then we introduce a fully discrete scheme to solve the problem and derive an error estimate. Under appropriate regularity assumptions of the exact solution, we obtain the optimal order error estimate. Finally, numerical results are reported to show the performance of the numerical method.

}, issn = {2617-8710}, doi = {https://doi.org/2020-IJNAM-18353}, url = {https://global-sci.com/article/83045/numerical-analysis-of-a-history-dependent-variational-hemivariational-inequality-for-a-viscoplastic-contact-problem} }