@Article{IJNAM-11-1, author = {}, title = {Convergence of Adaptive FEM for Some Elliptic Obstacle Problem with Inhomogeneous Dirichlet Data}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2014}, volume = {11}, number = {1}, pages = {229--253}, abstract = {
In this work, we show the convergence of adaptive lowest-order FEM (AFEM) for an elliptic obstacle problem with non-homogeneous Dirichlet data, where the obstacle $\chi$ is restricted only by $\chi\in H^2(\Omega)$. The adaptive loop is steered by some residual based error estimator introduced in Braess, Carstensen & Hoppe (2007) that is extended to control oscillations of the Dirichlet data, as well. In the spirit of Cascon ET AL. (2008), we show that a weighted sum of energy error, estimator, and Dirichlet oscillations satisfies a contraction property up to certain vanishing energy contributions. This result extends the analysis of Braess, Carstensen & Hoppe (2007) and Page & Praetorius (2013) to the case of non-homogeneous Dirichlet data as well as certain non-affine obstacles and introduces some energy estimates to overcome the lack of nestedness of the discrete spaces.
}, issn = {2617-8710}, doi = {https://doi.org/2014-IJNAM-523}, url = {https://global-sci.com/article/83336/convergence-of-adaptive-fem-for-some-elliptic-obstacle-problem-with-inhomogeneous-dirichlet-data} }