@Article{IJNAM-10-3, author = {}, title = {An Algorithm for Finding Nonnegative Minimal Norm Solutions of Linear Systems}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2013}, volume = {10}, number = {3}, pages = {745--755}, abstract = {
A system of linear equations $Ax = b$, in $n$ unknowns and $m$ equations which has a nonnegative solution is considered. Among all its solutions, the one which has the least norm is sought when $\mathbb{R}^n$ is equipped with a strictly convex norm. We present a globally convergent, iterative algorithm for computing this solution. This algorithm takes into account the special structure of the problem. Each iteration cycle of the algorithm involves the solution of a similar quadratic problem with a modified objective function. Duality conditions for optimality are studied. Feasibility and global convergence of the algorithm are proved. As a special case we implemented and tested the algorithm for the $\ell^p$-norm, where $1 < p < ∞$. Numerical results are included.
}, issn = {2617-8710}, doi = {https://doi.org/2013-IJNAM-593}, url = {https://global-sci.com/article/83429/an-algorithm-for-finding-nonnegative-minimal-norm-solutions-of-linear-systems} }