@Article{IJNAM-7-3, author = {}, title = {Interior Layers in a Reaction-Diffusion Equation with a Discontinuous Diffusion Coefficient}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2010}, volume = {7}, number = {3}, pages = {444--461}, abstract = {

In this paper a problem arising in the modelling of semiconductor devices motivates the study of singularly perturbed differential equations of reaction-diffusion type with discontinuous data. The solutions of such problems typically contain interior layers where the gradient of the solution changes rapidly. Parameter-uniform methods based on piecewise-uniform Shishkin meshes are constructed and analysed for such problems. Numerical results are presented to support the theoretical results and to illustrate the benefits of using a piecewise-uniform Shishkin mesh over the use of uniform meshes in the simulation of a simple semiconductor device.

}, issn = {2617-8710}, doi = {https://doi.org/2010-IJNAM-730}, url = {https://global-sci.com/article/83600/interior-layers-in-a-reaction-diffusion-equation-with-a-discontinuous-diffusion-coefficient} }