@Article{JCM-41-4, author = {Yan, Xiaoqiang and Xu, Qian and Zhang, Hong and Songhe, Song and Xiujun, Cheng}, title = {Solving Nonlinear Delay-Differential-Algebraic Equations with Singular Perturbation via Block Boundary Value Methods}, journal = {Journal of Computational Mathematics}, year = {2023}, volume = {41}, number = {4}, pages = {643--662}, abstract = {

Block boundary value methods (BBVMs) are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation (DDAESP). It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP. Besides, whenever the classic Lipschitz conditions are satisfied, the extended BBVMs are preconsistent and $p$th order consistent. Moreover, through some numerical examples, the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.

}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2109-m2021-0020}, url = {https://global-sci.com/article/84137/solving-nonlinear-delay-differential-algebraic-equations-with-singular-perturbation-via-block-boundary-value-methods} }