@Article{JCM-40-2, author = {Liu, Libin and Yanping, Chen and Ying, Liang}, title = {Numerical Analysis of a Nonlinear Singularly Perturbed Delay Volterra Integro-Differential Equation on an Adaptive Grid}, journal = {Journal of Computational Mathematics}, year = {2022}, volume = {40}, number = {2}, pages = {258--274}, abstract = {

In this paper, we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay. This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived. Based on the a priori error bound and mesh equidistribution principle, we prove that there exists a mesh gives optimal first order convergence which is robust with respect to the perturbation parameter. The a posteriori error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm. Furthermore, we extend our presented adaptive grid algorithm to a class of second-order nonlinear singularly perturbed delay differential equations. Numerical results are provided to demonstrate the effectiveness of our presented monitor function. Meanwhile, it is shown that the standard arc-length monitor function is unsuitable for this type of singularly perturbed delay differential equations with a turning point.

}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2008-m2020-0063}, url = {https://global-sci.com/article/84177/numerical-analysis-of-a-nonlinear-singularly-perturbed-delay-volterra-integro-differential-equation-on-an-adaptive-grid} }