@Article{JCM-36-3, author = {Wang, Hong and Xin, Liu and Xiaojun, Chen and Yuan, Yaxiang}, title = {SNIG Property of Matrix Low-Rank Factorization Model}, journal = {Journal of Computational Mathematics}, year = {2018}, volume = {36}, number = {3}, pages = {374--390}, abstract = {

Recently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least squares problem and consequently a quartic polynomial optimization problem. In this paper, we introduce a concept of the SNIG ("Second-order Necessary optimality Implies Global optimality") condition which stands for the property that any second-order stationary point of the matrix factorization model must be a global minimizer. Some scenarios under which the SNIG condition holds are presented. Furthermore, we illustrate by an example when the SNIG condition may fail.

}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1707-m2016-0796}, url = {https://global-sci.com/article/84473/snig-property-of-matrix-low-rank-factorization-model} }