@Article{JCM-33-2, author = {Tianliang, Hou and Yanping, Chen}, title = {Mixed Discontinuous Galerkin Time-Stepping Method for Linear Parabolic Optimal Control Problems}, journal = {Journal of Computational Mathematics}, year = {2015}, volume = {33}, number = {2}, pages = {158--178}, abstract = {

In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element approximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time discretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We derive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori $L^2(0, T ;L^2(Ω))$ error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates.

}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1211-m4267}, url = {https://global-sci.com/article/84592/mixed-discontinuous-galerkin-time-stepping-method-for-linear-parabolic-optimal-control-problems} }