@Article{JCM-33-4, author = {Xin, Li}, title = {Some Properties for Analysis-Suitable $T$-Splines}, journal = {Journal of Computational Mathematics}, year = {2015}, volume = {33}, number = {4}, pages = {428--442}, abstract = {
Analysis-suitable $T$-splines (AS $T$-splines) are a mildly topological restricted subset of T-splines which are linear independent regardless of knot values [1–3]. The present paper provides some more iso-geometric analysis (IGA) oriented properties for AS $T$-splines and generalizes them to arbitrary topology AS $T$-splines. First, we prove that the blending functions for analysis-suitable T-splines are locally linear independent, which is the key property for localized multi-resolution and linear independence for non-tensor-product domain. And then, we prove that the number of $T$-spline control points which contribute each Bézier element is optimal, which is very important to obtain a bound for the number of non zero entries in the mass and stiffness matrices for IGA with $T$-splines. Moreover, it is found that the elegant labeling tool for B-splines, blossom, can also be applied for analysis-suitable $T$-splines.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1504-m4493}, url = {https://global-sci.com/article/84608/some-properties-for-analysis-suitable-t-splines} }