@Article{JCM-32-2, author = {}, title = {Numerical Studies of a Class of Composite Preconditioners}, journal = {Journal of Computational Mathematics}, year = {2014}, volume = {32}, number = {2}, pages = {136--151}, abstract = {
In this paper, we study a composite preconditioner that combines the modified tangential frequency filtering decomposition with the ILU(0) factorization. Spectral property of the composite preconditioner is examined by the approach of Fourier analysis. We illustrate that condition number of the preconditioned matrix by the composite preconditioner is asymptotically bounded by $\mathcal{O}$($h^{-\frac23}_p$) on a standard model problem. Performance of the composite preconditioner is compared with other preconditioners on several problems arising from the discretization of PDEs with discontinuous coefficients. Numerical results show that performance of the proposed composite preconditioner is superior to other relative preconditioners.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1401-m4145}, url = {https://global-sci.com/article/84625/numerical-studies-of-a-class-of-composite-preconditioners} }