@Article{JCM-22-4, author = {Zhang, Yuhai}, title = {On the General Algebraic Inverse Eigenvalue Problems}, journal = {Journal of Computational Mathematics}, year = {2004}, volume = {22}, number = {4}, pages = {567--580}, abstract = {
A number of new results on sufficient conditions for the solvability and numerical algorithms of the following general algebraic inverse eigenvalue problem are obtained: Given $n+1$ real $n\times n$ matrices $A=(a_{ij}),A_k=(a_{ij}^{(k)})(k=1,2,\cdots,n)$ and $n$ distinct real numbers $\lambda_1,\lambda_2,\cdots,\lambda_n,$ find $n$ real number $c_1,c_2,\cdots,c_n$ such that the matrix $A(c)=A+\sum\limits_{k=1}^{n}c_k A_k$ has eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_n.$
}, issn = {1991-7139}, doi = {https://doi.org/2004-JCM-10306}, url = {https://global-sci.com/article/85243/on-the-general-algebraic-inverse-eigenvalue-problems} }