@Article{JCM-20-3, author = {Xie, Dong-Xiu and Xi-Yan, Hu and Zhang, Lei}, title = {The Solvability Conditions for Inverse Eigenvalue Problem of Anti-Bisymmetric Matrices}, journal = {Journal of Computational Mathematics}, year = {2002}, volume = {20}, number = {3}, pages = {245--256}, abstract = {

This paper is mainly concerned with solving the following two problems:
Problem I. Given $X$ $\in$ $ C^{n \times m} $, $\Lambda = {\rm diag}( \lambda_1, \lambda_2, \dots, \lambda_m) \in C^{m\times m}$. Find $ A \in ABSR^{n \times n} $ such that $$AX=X\Lambda$$where $ABSR^{n \times n}$ is the set of all real $n\times n$ anti-bisymmetric matrices.

Problem Ⅱ. Given $A^* \in R^{n \times n}$. Find $\hat{A} \in S_E $ such that $$||A^* - \hat{A}||_F=\underset{A\in S_E}{\min}||A^*- A ||_F,$$where $||\cdot||_F$ is Frobenius norm, and $S_E$ denotes the solution set of Problem Ⅰ.

The necessary and sufficient conditions for the solvability of Problem Ⅰ have been studied. The general form of $ S_E $ has been given. For Problem Ⅱ the expression of the solution has been provided.

}, issn = {1991-7139}, doi = {https://doi.org/2002-JCM-8914}, url = {https://global-sci.com/article/85404/the-solvability-conditions-for-inverse-eigenvalue-problem-of-anti-bisymmetric-matrices} }