@Article{JCM-17-5, author = {Zhao, Shuang-Suo and Wang, Chang-Yin and Zhang, Guo-Feng}, title = {Relations Between Two Sets of Functions Defined by the Two Interrelated One-Side Lipschitz Conditions}, journal = {Journal of Computational Mathematics}, year = {1999}, volume = {17}, number = {5}, pages = {457--462}, abstract = {

In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the right-hand function $f(y)$ satisfy one-side Lipschitz condition $$ <f(y)-f(z),y-z> ≤ v' ||y-z||^2,f: \Omega \subseteq C^m → C^m,$$ or another related one-side Lipschitz condition $$[F(Y)-F(Z),Y-Z]_D ≤ v'' ||Y-Z||^2_D, F:\Omega^s \subseteq C^{ms} → C^{ms},$$ this paper demonstrates that the difference of the two sets of all functions satisfying the above two conditions respectively is at most that $v'-v''$ only is constant independent of stiffness of function $f$. 

}, issn = {1991-7139}, doi = {https://doi.org/1999-JCM-9117}, url = {https://global-sci.com/article/85643/relations-between-two-sets-of-functions-defined-by-the-two-interrelated-one-side-lipschitz-conditions} }