@Article{JMS-52-3, author = {Penati, Mattia and Miglio, Edie}, title = {A New Mixed Method for the Stokes Equations Based on Stress-Velocity-Vorticity Formulation}, journal = {Journal of Mathematical Study}, year = {2019}, volume = {52}, number = {3}, pages = {299--319}, abstract = {
In this paper, we develop and analyze a mixed finite element method for the Stokes flow. This method is based on a stress-velocity-vorticity formulation. A new discretization is proposed: the stress is approximated using the Raviart-Thomas elements, the velocity and the vorticity by piecewise discontinuous polynomials. It is shown that if the orders of these spaces are properly chosen then the advocated method is stable. We derive error estimates for the Stokes problem, showing optimal accuracy for both the velocity and vorticity.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v52n3.19.05}, url = {https://global-sci.com/article/87728/a-new-mixed-method-for-the-stokes-equations-based-on-stress-velocity-vorticity-formulation} }