@Article{JNMA-1-4, author = {Raoqing, Ma and Shangzhi, Li and Shangjiang, Guo}, title = {Steady-State Solution for Reaction-Diffusion Models with Mixed Boundary Conditions}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2019}, volume = {1}, number = {4}, pages = {545--560}, abstract = {

In this paper, we deal with a diffusive predator-prey model with mixed boundary conditions, in which the prey population can escape from the boundary of the domain while predator population can only live in this area and can not leave. We first investigate the asymptotic behaviour of positive solutions and obtain a necessary condition ensuring the existence of positive steady state solutions. Next, we investigate the existence of positive steady state solutions by using maximum principle, the fixed point index theory, $L_p$-estimation, and embedding theorems, Finally, local stability and uniqueness are obtained by linear stability theory and perturbation theory of linear operators.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2019.545}, url = {https://global-sci.com/article/88041/steady-state-solution-for-reaction-diffusion-models-with-mixed-boundary-conditions} }