@Article{JPDE-35-4, author = {Guo, Boling and Shao, Jie and Guo, Boling}, title = {On Local Wellposedness of the Schrödinger-Boussinesq System}, journal = {Journal of Partial Differential Equations}, year = {2022}, volume = {35}, number = {4}, pages = {360--381}, abstract = {

In this paper we prove that the Schrödinger-Boussinesq system with solution $(u,v,$  $(-\partial_{xx})^{-\frac12} v_t)$ is locally wellposed in $ H^{s}\times H^{s}\times H^{s-1}$, $s\geqslant-{1}/{4}$. The local wellposedness is obtained by the transformation from the problem into a nonlinear Schrödinger type equation system and the contraction mapping theorem in a suitably modified Bourgain type space inspired by the work of Kishimoto, Tsugawa. This result improves the known local wellposedness in $ H^{s}\times H^{s}\times H^{s-1}$, $s>-{1}/{4}$ given by Farah.

}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v35.n4.5}, url = {https://global-sci.com/article/88122/on-local-wellposedness-of-the-schrodinger-boussinesq-system} }