@Article{JPDE-25-4, author = {Wang, Meng and Qingyue, Liu}, title = {The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface}, journal = {Journal of Partial Differential Equations}, year = {2012}, volume = {25}, number = {4}, pages = {335--355}, abstract = {
Let M be a compact Riemann surface, h(x) a positive smooth function on M, and f(x) a smooth function on M which satisfies that $∫_Me^φdV_g=1$. In this paper, we consider the functional $J(u)=½∫_M|∇u|^2e^φdV_g+8πc∫_Mue^φdV_g-8πclog∫_Mhe^{u+φ}dV_g$. We give a sufficient condition under which J achieves its minimum for $c≤inf_{x∈M^{e^φ(x)}}$.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v25.n4.3}, url = {https://global-sci.com/article/88357/the-equation-demuemfemuem8empcem1-emheemsupemuemsup-on-a-riemann-surface} }