@Article{JPDE-15-4, author = {}, title = {Spike-layered Solutions of Singularly Perturbed Quasilinear Dirichlet Problems on Ball}, journal = {Journal of Partial Differential Equations}, year = {2002}, volume = {15}, number = {4}, pages = {65--80}, abstract = { We consider the singularly perturbed quasilinear Dirichlet problems of the form  {-∈Δ_pu = f(u) in Ω  u ≥ 0 in , u = 0 on ∂ Ω  where Δ_pu = div(|Du|^{p-2}Du), p > 1, f is subcritical. ∈ > 0 is a small parameter and  is a bounded smooth domain in R^N (N ≥ 2). When Ω = B_1 = {x; |x| < 1} is the unit ball, we show that the least energy solution is radially symmetric, the solution is also unique and has a unique peak point at origin as ∈ → 0.}, issn = {2079-732X}, doi = {https://doi.org/2002-JPDE-5462}, url = {https://global-sci.com/article/88629/spike-layered-solutions-of-singularly-perturbed-quasilinear-dirichlet-problems-on-ball} }