@Article{JPDE-14-4,
author = {},
title = {Global W2,p Solutions of GBBM Equations on Unbounded Domain},
journal = {Journal of Partial Differential Equations},
year = {2001},
volume = {14},
number = {4},
pages = {349--355},
abstract = { In this paper we study the initial boundary value problem of GBBM equations on unbounded domain u_t - Δu_t = div f(u) u(x,0) = u_0(x) u|_{∂Ω} = 0 and corresponding Cauchy problem. Under the conditions: f( s) ∈ C^sup1 and satisfies (H)\qquad |f'(s)| ≤ C|s|^ϒ, 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3; 0 ≤ ϒ < ∞ if n = 2 u_0(x) ∈ W^{2,p}(Ω) ∩ W^{2,2}(Ω) ∩ W^{1,p}_0(Ω)(W^{2,p}(R^n) ∩ W^{2,2}(R^n) for Cauchy problem), 2 ≤ p < ∞, we obtain the existence and uniqueness of global solution u(x, t) ∈ W^{1,∞}(0, T; W^{2,p}(Ω) ∩ W^{2,2}(Ω) ∩ W^{1,p}_0(Ω))(W^{1,∞}(0, T; W^{2,p}(R^n) ∩ W^{2,2} (R^n)) for Cauchy problem), so the results of [1] and [2] are generalized and improved in essential.},
issn = {2079-732X},
doi = {https://doi.org/2001-JPDE-5488},
url = {https://global-sci.com/article/88655/global-emwemsup2empemsup-solutions-of-gbbm-equations-on-unbounded-domain}
}