@Article{JPDE-5-3, author = {}, title = {Blow Up of Classical Solutions to $\Box$ U=|u|1+α in Three Space Dimensions}, journal = {Journal of Partial Differential Equations}, year = {1992}, volume = {5}, number = {3}, pages = {21--32}, abstract = { We study the life span of classical solutions to ◻u = |u|^{1+α} in three space dimensions with initial data t = 0: u = εf(x), u, = εg(x), where f and g have compact support and are not both identically zero, ε is a small parameter. We obtain respectively upper and lower bounds of the same order of magnitude for the life span for sufficiently small ε in case 1 ≤ α ≤ \sqrt{2}. We also proved that the classical solution always blows up even when ε = 1 in the critical case α = \sqrt{2}.}, issn = {2079-732X}, doi = {https://doi.org/1992-JPDE-5742}, url = {https://global-sci.com/article/89020/blow-up-of-classical-solutions-to-box-uusup1asup-in-three-space-dimensions} }