@Article{MC-14-3, author = {范, 明}, title = {冯 • 诺依曼最重要的数学遗产 —— 算子代数及其现代发展}, journal = {数学文化}, year = {2023}, volume = {14}, number = {3}, pages = {52--61}, abstract = {

image.png

算子代数是泛函分析中一个重要的研究领域,近几十年以来蓬勃发展,在表示论、微分几何、非交换几何、纽结理论、量子统计力学、量子信息和量子场论中获得广泛应用。算子代数是拓扑向量空间上连续线性算子的代数,特指由可分希尔伯特空间上有界线性算子组成的自共轭代数,其乘法由算子的复合运算给出。由于空间是无穷维的,因此要求算子代数在一定的拓扑下封闭。通常研究的算子代数包括一致闭的$C^*-$代数和弱闭的冯•诺依曼代数(或抽象的$W^*-$代数),冯•诺依曼代数是一类特殊的$C^*-$代数。在现代算子代数理论中,许多概念和理论均起源于约翰•冯•诺依曼极具前瞻性的思想和工作。

}, issn = {2617-8656}, doi = {https://doi.org/2023-MC-21981}, url = {https://global-sci.com/article/89118/%E5%86%AF%20%E2%80%A2%20%E8%AF%BA%E4%BE%9D%E6%9B%BC%E6%9C%80%E9%87%8D%E8%A6%81%E7%9A%84%E6%95%B0%E5%AD%A6%E9%81%97%E4%BA%A7%20%E2%80%94%E2%80%94%20%E7%AE%97%E5%AD%90%E4%BB%A3%E6%95%B0%E5%8F%8A%E5%85%B6%E7%8E%B0%E4%BB%A3%E5%8F%91%E5%B1%95} }