@Article{NMTMA-16-1, author = {Lan, Jin and Panchi, Li and Rui, Du and Yang, Lei and Jingrun, Chen and Lan, Jin and Rui, Du and Jingrun, Chen}, title = {A Second-Order Semi-Implicit Method for the Inertial Landau-Lifshitz-Gilbert Equation}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2023}, volume = {16}, number = {1}, pages = {182--203}, abstract = {

Electron spins in magnetic materials have preferred orientations collectively and generate the macroscopic magnetization. Its dynamics spans over a wide range of timescales from femtosecond to picosecond, and then to nanosecond. The Landau-Lifshitz-Gilbert (LLG) equation has been widely used in micromagnetics simulations over decades. Recent theoretical and experimental advances have shown that the inertia of magnetization emerges at sub-picosecond timescales and contributes significantly to the ultrafast magnetization dynamics, which cannot be captured intrinsically by the LLG equation. Therefore, as a generalization, the inertial LLG (iLLG) equation is proposed to model the ultrafast magnetization dynamics. Mathematically, the LLG equation is a nonlinear system of parabolic type with (possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed hyperbolic-parabolic type with degeneracy, and exhibits more complicated structures. It behaves as a hyperbolic system at sub-picosecond timescales, while behaves as a parabolic system at larger timescales spanning from picosecond to nanosecond. Such hybrid behaviors impose additional difficulties on designing efficient numerical methods for the iLLG equation. In this work, we propose a second-order semi-implicit scheme to solve the iLLG equation. The second-order temporal derivative of magnetization is approximated by the standard centered difference scheme, and the first-order temporal derivative is approximated by the midpoint scheme involving three time steps. The nonlinear terms are treated semi-implicitly using one-sided interpolation with second-order accuracy. At each time step, the unconditionally unique solvability of the unsymmetric linear system is proved with detailed discussions on the condition number. Numerically, the second-order accuracy of the proposed method in both time and space is verified. At sub-picosecond timescales, the inertial effect of ferromagnetics is observed in micromagnetics simulations, in consistency with the hyperbolic property of the iLLG model; at nanosecond timescales, the results of the iLLG model are in nice agreements with those of the LLG model, in consistency with the parabolic feature of the iLLG model.

}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0080}, url = {https://global-sci.com/article/90203/a-second-order-semi-implicit-method-for-the-inertial-landau-lifshitz-gilbert-equation} }