@Article{NMTMA-11-1, author = {}, title = {Rational Quasi-Interpolation Approximation of Scattered Data in $\mathbb{R}^3$}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2018}, volume = {11}, number = {1}, pages = {169--186}, abstract = {

This paper is concerned with a piecewise smooth rational quasi-interpolation with algebraic accuracy of degree $(n+1)$ to approximate the scattered data in $\mathbb{R}^3$. We firstly use the modified Taylor expansion to expand the mean value coordinates interpolation with algebraic accuracy of degree one to one with algebraic accuracy of degree $(n+1)$. Then, based on the triangulation of the scattered nodes in $\mathbb{R}^2$, on each triangle a rational quasi-interpolation function is constructed. The constructed rational quasi-interpolation is a linear combination of three different expanded mean value coordinates interpolations and it has algebraic accuracy of degree $(n+1)$. By comparing accuracy, stability, and efficiency with the $C^1$-Tri-interpolation method of Goodman [16] and the MQ Shepard method, it is observed that our method has some computational advantages.

}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2017-0019}, url = {https://global-sci.com/article/90449/rational-quasi-interpolation-approximation-of-scattered-data-in-mathbbr3} }