@Article{NMTMA-6-4, author = {}, title = {Error Estimates and Superconvergence of RT0 Mixed Methods for a Class of Semilinear Elliptic Optimal Control Problems}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2013}, volume = {6}, number = {4}, pages = {637--656}, abstract = {
In this paper, we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions. We derive some superconvergence properties for the control variable and the state variables. Moreover, we derive $L^∞$- and $H^{-1}$-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2013.1230nm}, url = {https://global-sci.com/article/90651/error-estimates-and-superconvergence-of-rt0-mixed-methods-for-a-class-of-semilinear-elliptic-optimal-control-problems} }