@Article{NMTMA-3-1, author = {}, title = {Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2010}, volume = {3}, number = {1}, pages = {23--39}, abstract = {
In this paper, a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions. Simple non-body-fitted meshes are used. For homogeneous jump conditions, both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions, a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface. With such a pair of functions, the discontinuities across the interface in the solution and flux are removed; and an equivalent elasticity interface problem with homogeneous jump conditions is formulated. Numerical examples are presented to demonstrate that such methods have second order convergence.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2009.m9001}, url = {https://global-sci.com/article/90715/immersed-interface-finite-element-methods-for-elasticity-interface-problems-with-non-homogeneous-jump-conditions} }