@Article{CMAA-2-1, author = {Xin-Xiang, Bian and Yi, Wang and Xie, Ling-Ling}, title = {Vanishing Viscosity Limit to Planar Rarefaction Wave with Vacuum for 3D Compressible Navier-Stokes Equations}, journal = {Communications in Mathematical Analysis and Applications}, year = {2023}, volume = {2}, number = {1}, pages = {21--69}, abstract = {

The vanishing viscosity limit of the three-dimensional (3D) compressible and isentropic Navier-Stokes equations is proved in the case that the corresponding 3D inviscid Euler equations admit a planar rarefaction wave solution connected with vacuum states. Moreover, a uniform convergence rate with respect to the viscosity coefficients is obtained. Compared with previous results on the zero dissipation limit to planar rarefaction wave away from vacuum states [27, 28], the new ingredients and main difficulties come from the degeneracy of vacuum states in the planar rarefaction wave in the multi-dimensional setting. Suitable cut-off techniques and some delicate estimates are needed near the vacuum states. The inviscid decay rate around the planar rarefaction wave with vacuum is determined by the cut-off parameter and the nonlinear advection flux terms of 3D compressible Navier-Stokes equations.

}, issn = {2790-1939}, doi = {https://doi.org/10.4208/cmaa.2022-0020}, url = {https://global-sci.com/article/90842/vanishing-viscosity-limit-to-planar-rarefaction-wave-with-vacuum-for-3d-compressible-navier-stokes-equations} }