@Article{JNMA-6-2, author = {Zhong, Liyan and Shen, Jianhe}, title = {Successive Canard Explosions in a Singularly Perturbed Spruce-Budworm Model with Holling-II Functional Response}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2024}, volume = {6}, number = {2}, pages = {238--264}, abstract = {
By combining geometric singular perturbation theory (GSPT) with qualitative method, this paper analyzes the phenomenon of successive canard explosions in a singularly perturbed Spruce-Budworm model with Holling-II functional response. We select suitable parameters such that the critical curve is $S$-shaped, and the full model only admits a unique equilibrium. Then, under the variation of the breaking parameter, it is found that a canard explosion followed by an inverse canard explosion successively occurs in this model. That is, a relaxation oscillation arises via the first canard explosion, which persists for a large interval of parameter until it vanishes via the so-called inverse canard explosion. All these theoretical predictions are verified by numerical simulations.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2024.238}, url = {https://global-sci.com/article/91151/successive-canard-explosions-in-a-singularly-perturbed-spruce-budworm-model-with-holling-ii-functional-response} }