An Adaptive Nonlinear Least-Squares Finite Element Method for a Pucci Equation in Two Dimensions

Susanne C. Brenner^{1,*}, Li-Yeng Sung¹ and Zhiyu Tan²

Received 31 October 2023; Accepted (in revised version) 15 January 2024.

Abstract. We present an adaptive nonlinear least-squares finite element method for a two dimensional Pucci equation. The efficiency of the method is demonstrated by a numerical experiment.

AMS subject classifications: 65N30, 65N50, 35J60, 90C30

Key words: Pucci equation, nonlinear least-squares, finite element, adaptive.

1. Introduction

The Pucci equation is a fully nonlinear second order elliptic partial differential equation that first appeared in the study of linear uniformly elliptic equations in nondivergence form — cf. [13,35,36], and has found applications in optimal designs (cf. [14]) and population models — cf. [12,37].

Let Ω be a bounded convex polygon in \mathbb{R}^2 . We consider in this paper the following Dirichlet boundary value problem for a Pucci equation:

$$\alpha \lambda_{\max}(D^2 u) + \lambda_{\min}(D^2 u) = \psi \quad \text{in } \Omega,$$

 $u = \phi \quad \text{on } \partial \Omega.$ (1.1)

where $\alpha > 1$, $\lambda_{\max}(D^2u)$ (resp., $\lambda_{\min}(D^2u)$) is the maximum (resp., minimum) eigenvalue of D^2u (the Hessian of u), $\psi \in L^2(\Omega)$ and $\phi \in H^2(\Omega)$.

Remark 1.1. Throughout this paper we will follow the standard notation for differential operators, functions spaces and norms that can be found for example in [1,7,22].

¹Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA. ²School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University, Fujian 361005, China.

^{*}Corresponding author. *Email addresses:* brenner@math.lsu.edu (S.C. Brenner), sung@math.lsu.edu (L.-Y. Sung), zhiyutan@xmu.edu.cn (Z. Tan)

The numerical treatment of Pucci's equation began in [14, 19], followed by the work in [30]. The finite element methods in these papers were tested extensively but without convergence analysis. Finite difference methods for the viscosity solutions of the Pucci equation were investigated in [23, 34], where the convergence was established in the framework of [2] without convergence rate, and a second order consistent finite difference method was considered in [4].

Motivated by our work on the Monge-Ampère equation in [10], a nonlinear least-squares method was presented in [9] for the strong solutions of (1.1), where convergence with convergence rates was established. Our goal in this paper is to present an adaptive version of this nonlinear least-squares method and demonstrate its effectiveness through a numerical experiment.

The rest of the paper is organized as follows. We introduce the nonlinear least-squares method in Section 2 and briefly recall the theoretical results from [9]. The numerical result for the adaptive version is presented in Section 3. We end with some concluding remarks in Section 4.

2. A Nonlinear Least-Squares Finite Element Method

Let $S_{2\times 2}$ be the space of real 2×2 symmetric matrices and P(M) be the Pucci operator defined on $S_{2\times 2}$ given by

$$P(M) = \alpha \lambda_{\max}(M) + \lambda_{\min}(M)$$

for a constant $\alpha > 1$. We can then write the boundary value problem (1.1) as

$$P(D^2u) = \psi$$
 in Ω ,
 $u = \phi$ on $\partial \Omega$. (2.1)

A unique strong solution $u \in H^2(\Omega)$ of (2.1) was established in [9] by using the uniform ellipticity of P(D), the Miranda-Talenti inequality

$$||D^2v||_{L^2(\Omega)} \le ||\Delta v||_{L^2(\Omega)}, \quad \forall v \in H^2(\Omega) \cap H^1_0(\Omega),$$

that holds on convex domains [24,32,38] and the theory of Companato on near operators [15,31].

Let \mathscr{T}_h be a regular triangulation of Ω with mesh size $h, V_h \subset H^1(\Omega)$ be the cubic Lagrange finite element space (cf. [7,18]) associated with \mathscr{T}_h , and Π_h be the nodal interpolation operator from $C(\bar{\Omega})$ to V_h .

The nonlinear least-squares method in [9] is given by

$$u_h = \underset{v_h \in L_h}{\operatorname{argmin}} J_h(v_h), \tag{2.2}$$

where the constraint set L_h is defined by

$$L_h = \{ \nu_h \in V_h : \nu_h = \Pi_h \phi \text{ on } \partial \Omega \}, \tag{2.3}$$