On an Incremental Version of the Chebyshev Method for the Matrix $p$-th Root

Authors

  • S. Amat Universidad Politécnica de Cartagena
  • S. Busquier Universidad Politécnica de Cartagena
  • J.A. Ezquerro University of La Rioja image/svg+xml
  • M.A. Hernández-Verόn University of La Rioja image/svg+xml
  • N. Romero University of La Rioja image/svg+xml

DOI:

https://doi.org/10.4208/jcm.2406-m2024-0017

Abstract

The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo [SIAM J. Matrix Anal. Appl., 28:2 (2006), 503–523] for approximating the principal $p$-th root of a matrix. We construct and analyze an incremental Chebyshev method with better numerical behavior. We present a convergence and numerical analysis of the method, where we compare it with the corresponding incremental Newton method. The new method has order of convergence three and is stable and more efficient than the incremental Newton method.

Author Biographies

  • S. Amat

    Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, Spain

  • S. Busquier

    Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, Spain

  • J.A. Ezquerro

    Departamento de Matemáticas y Computacíon, Universidad de La Rioja, Logroño, Spain

  • M.A. Hernández-Verόn

    Departamento de Matemáticas y Computacíon, Universidad de La Rioja, Logroño, Spain

  • N. Romero

    Departamento de Matemáticas y Computacíon, Universidad de La Rioja, Logroño, Spain

Published

2025-10-30

Issue

Section

Articles