Two-Level Stabilized Finite Volume Methods for the Stationary Navier-Stokes Equations

Authors

  • Tong Zhang
  • Shunwei Xu

DOI:

https://doi.org/10.4208/aamm.11-m11178

Keywords:

Stationary Navier-Stokes equations, finite volume method, two-level method, error estimate.

Abstract

In this work, two-level stabilized finite volume formulations for the 2D steady Navier-Stokes equations are considered. These methods are based on the local Gauss integration technique and the lowest equal-order finite element pair. Moreover, the two-level stabilized finite volume methods involve solving one small Navier-Stokes problem on a coarse mesh with mesh size $H$, a large general Stokes problem for the Simple and Oseen two-level stabilized finite volume methods on the fine mesh with mesh size $h$=$\mathcal{O}(H^2)$ or a large general Stokes equations for the Newton two-level stabilized finite volume method on a fine mesh with mesh size $h$=$\mathcal{O}(|\log h|^{1/2}H^3)$. These methods we studied provide an approximate solution $(\widetilde{u}_h^v,\widetilde{p}_h^v)$ with the convergence rate of same order as the standard stabilized finite volume method, which involve solving one large nonlinear problem on a fine mesh with mesh size $h$. Hence, our methods can save a large amount of computational time.

Published

2018-08-10

Abstract View

  • 43576

Pdf View

  • 4797

Issue

Section

Articles