A Nonconforming P2 and Discontinuous P1 Mixed Finite Element on Tetrahedral Grids

Authors

  • Shangyou Zhang

DOI:

https://doi.org/10.4208/aamm.OA-2023-0316

Keywords:

Quadratic finite element, nonconforming finite element, mixed finite element, Stokes equations, tetrahedral grid.

Abstract

A nonconforming $P_2$ finite element is constructed by enriching the conforming $P_2$ finite element space with seven $P_2$ nonconforming bubble functions (out of fifteen such bubble functions on each tetrahedron). This spacial nonconforming $P_2$ finite element, combined with the discontinuous $P_1$ finite element on general tetrahedral grids, is inf-sup stable for solving the Stokes equations. Consequently, such a mixed finite element method produces optimal-order convergent solutions for solving the stationary Stokes equations. Numerical tests confirm the theory.

Published

2025-05-12

Abstract View

  • 8236

Pdf View

  • 503

Issue

Section

Articles