DOI: 10.4208/ata.OA-2018-0002 December 2024

Analytic Functions Related to the Strip Domains Involving Generalized Sălăgean Operator

Xiaoyuan Wang^{1,*} and Zhiren Wang²

Received 24 January 2018; Accepted (in revised version) 29 September 2019

Abstract. In the paper, the authors introduce a new subclass of univalent functions associated with the strip domains by using the generalized Sălăgean operator. The bounds of coefficients and Fekete-Szegö inequality for functions in this class are obtained. The results presented here extend some of the earlier results.

Key Words: Analytic functions, starlike functions, strip domain, differential subordination, Sălăgean operator.

AMS Subject Classifications: 30C45, 30C80

1 Introduction

Let A denote the class of functions f(z) normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic and univalent in the unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$.

Let f(z) and g(z) be analytic functions in \mathbb{U} . f(z) is said to be subordinate to g(z), written by

$$f(z) \prec g(z), \quad (z \in \mathbb{U}).$$

If there exists a Schwarz function $\omega(z)$, analytic in \mathbb{U} , with

$$\omega(0) = 0$$
 and $|\omega(z)| < 1$,

such that

$$f(z) = g(\omega(z)), \quad (z \in \mathbb{U}).$$

¹ School of Mathematical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China

² College of Science, Yanshan University, Qinhuangdao, Hebei 066004, China

^{*}Corresponding author. *Email addresses:* mewangxiaoyuan@163.com (X. Wang), wangzhiren528@sina.com (Z. Wang)

It is well known that

$$f(z) \prec g(z), \quad (z \in \mathbb{U}) \implies f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

If g(z) is univalent, then

$$f(z) \prec g(z), \quad (z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Further, let \mathcal{P} denote the class of functions p(z) of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n,$$
(1.2)

which are analytic and convex in \mathbb{U} . If $p(z) \in \mathcal{P}$ satisfies the condition

$$\Re(p(z)) > 0$$
, $(z \in \mathbb{U})$,

then, we call the functions the Carathéodory Lemma (e.g., see [2]).

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α and convex of order α in \mathbb{U} if it satisfies

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \qquad (0 \le \alpha < 1; z \in \mathbb{U}),$$

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \qquad (0 \le \alpha < 1; z \in \mathbb{U}).$$

This class denotes by $S^*(\alpha)$ and $K(\alpha)$ introduced by Robertson [12]. Let $S^*(0) = S^*$ and $\mathcal{K}(0) = \mathcal{K}$, respectively.

Let $\mathcal{M}(\beta)$ and $\mathcal{N}(\beta)$ be the class of functions of $f(z) \in \mathcal{A}$ which satisfy

$$\Re\left(\frac{zf'(z)}{f(z)}\right) < \beta, \qquad (\beta > 1; z \in \mathbb{U}),$$

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) < \beta, \qquad (\beta > 1; z \in \mathbb{U}).$$

The class $\mathcal{M}(\beta)$ and $\mathcal{N}(\beta)$ are investigated by Uralegaddi et al., respectively [15].

Definition 1.1 ([3]). Let $-1 \le B < A \le 1$, $C \ne D$ and $-1 \le D \le 1$. The function $p(z) \in P(A, B; C, D)$ if and only if p(z) satisfies the following two subordination relationships

$$p(z) \prec h_1(z) = \frac{1 + Az}{1 + Bz},$$
 (1.3a)

$$p(z) \prec h_2(z) = \frac{1 + Cz}{1 + Dz}.$$
 (1.3b)

For $A = 1 - 2\alpha$, $(0 \le \alpha < 1)$, B = -1, $C = 1 - 2\beta$, $(\beta > 1)$ and D = -1, then

$$p(z) \in P(\alpha, \beta) = P(1 - 2\alpha, -1; 1 - 2\beta, -1) \iff \alpha < \Re(p(z)) < \beta. \tag{1.4}$$