DOI: 10.4208/ata.OA-2022-0017 March 2025

Distributional Boundary Values of Holomorphic Functions on Tubular Domains

Guantie Deng¹ and Weiwei Wang^{2,*}

Received 13 June 2022; Accepted (in revised version) 17 November 2024

Abstract. The main purpose of this paper is to establish the distributional boundary values of functions in the weighted Hardy space, which improves the results of Carmichael in [4] and [8], where the weight function is linear. As our main result, we will prove that f(z) in $H(\psi,\Gamma)$ has the \mathcal{Z}' boundary value and can be expressed by the inverse Fourier transform of a distribution. Next, we will establish the \mathcal{S}' boundary value under stronger assumptions and give more precise expression if f(z) also converges to $U \in D'_{L^p}(\mathbb{R}^n)$, where $1 \le p \le 2$. In addition, we will also study the inverse result, in which we will prove that f(z) is holomorphic on T_{Γ} .

Key Words: The weighted Hardy space, distributional boundary values, tubular domains. **AMS Subject Classifications**: 32A07, 32A40, 42B25, 42B30

1 Introduction

The existence of the distributional boundary values of holomorphic functions on tubular domains plays an important part in the study of complex analysis of several variables. We say a function f(z) holomorphic on the tube $T_{\Gamma} = \{z \in \mathbb{C}^n : z = x + \mathrm{i}y, \ x \in \mathbb{R}^n, \ y \in \Gamma\}$ has the \mathcal{D}' boundary value $U \in \mathcal{D}'$ if for any compact sub-cone $\Gamma' \subseteq \Gamma$, the limit

$$\lim_{y \in \Gamma', y \to 0} \langle f(x + iy), \phi(x) \rangle = \langle U, \phi \rangle$$

holds for all $\phi(x) \in \mathcal{D}$, where \mathcal{D} is the space composed of all infinitely differentiable functions on \mathbb{R}^n , which have compact support and \mathcal{D}' denotes the space of all linear functionals on \mathcal{D} .

Many scholars [13,19] have considered similar problems for different spaces of distributions including S', the space of tempered distributions [12]. Here, we say an infinitely differentiable function $\varphi(x)$ belongs to S if

$$\sup_{x\in\mathbb{R}^n}|x^{\alpha}D^{\beta}\varphi(x)|<\infty$$

¹ School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

² School of Science, Civil Aviation University of China, Tianjin 300300, China

^{*}Corresponding author. Email addresses: denggt@bnu.edu.cn (G. Deng), ww_wang@cauc.edu.cn (W. Wei)

for any $\alpha, \beta \in \mathbb{N}^n$. Tillmann [20] showed that a function f(z) holomorphic on an octant has the \mathcal{S}' boundary value if f(z) satisfies the boundary condition:

$$|f(z)| \leq M \prod_{j=1}^{n} (1+|z_j|^2)^{m_j} |y_j|^{-1/2-k_j},$$

where M, m_i , k_i are constants.

Beltrami and Wohlers [1–3] obtained the S' boundary value result for n=1 using a boundary condition that is less restrictive than that of Tillmann. More percisely, they proved:

Theorem 1.1. Suppose f(z) is holomorphic on the upper complex plane $\mathbb{C}^+ = \{z \in \mathbb{C} : z = x + \mathrm{i}y, \ x \in \mathbb{R}^n, \ y > 0\}$ and satisfies for any $\delta > 0$ that

$$|f(z)| \le C_{\delta} (1+|z|)^N \tag{1.1}$$

for all $y \geq \delta$. If f(z) converges in the \mathcal{S}' topology to a generalized function U as $y \to 0^+$, then $U \in \mathcal{S}'$ and U is the inverse Fourier transform of $V \in \mathcal{S}'$ supported in $[0, \infty)$. Moreover, $f(z) = \langle V, e^{2\pi i \langle z, t \rangle} \rangle$.

The same result was proved by Dejager [9] in a slightly more general setting. The extension to n dimensions was obtained by Carmichael [6] in the case that if f(z) is holomorphic on the octant $G = \{x + iy \in \mathbb{C}^n : x \in \mathbb{R}^n, y_j > 0, j = 1, 2, \dots, n\}$.

The investigation of the distributional boundary values was also generalized to tubular domains. We now give some definitions that will be used throughout this paper.

A nonempty subset $\Gamma \subseteq \mathbb{R}^n$ is called a cone with vertex at 0 if $\alpha x \in \Gamma$ whenever $x \in \Gamma$ and $\alpha > 0$. The dual cone of Γ is expressed as $\Gamma^* = \{y \in \mathbb{R}^n : \langle y, x \rangle \geq 0 \text{ for any } x \in \Gamma\}$, which is clearly a closed convex cone with vertex at 0. Next, $(\Gamma^*)^* = \overline{\operatorname{ch}(\Gamma)}$, where $\operatorname{ch}(\Gamma)$ is the convex hull of Γ .

We say that the cone Γ is regular if the interior of Γ^* is non-empty. The open cone Γ' is called the compact sub-cone of Γ if $\operatorname{pr}(\overline{\Gamma'}) \subset \operatorname{pr}(\Gamma)$, where $\operatorname{pr}(\Gamma)$ is the intersection of Γ and the surface of the unit sphere in \mathbb{R}^n .

For any $\beta=(\beta_1,\cdots,\beta_n)\in\mathbb{N}^n$, we denote by D_t^β the differential operation $D_t^\beta=D_{t_1}^{\beta_1}\cdots D_{t_n}^{\beta_n}$, where $D_{t_j}=-\frac{1}{2\pi\mathrm{i}}\frac{\partial}{\partial t_j}$ for $j=1,\cdots,n$.

We say an infinitely differentiable function $\varphi(x)$ belongs to \mathcal{Z} if $\varphi(x)$ can be extended to an entire function, which satisfies for any $\alpha \in \mathbb{N}^n$ that

$$|z^{\alpha}\varphi(z)| \leq M_{\beta} \exp\{a_1|y_1| + a_2|y_2| + \cdots + a_n|y_n|\},$$

where M_{β} depends on β and possibly on φ and $a_j > 0$ $(j = 1, 2, \dots, n)$ depends only on φ .

For any $1 \le p < \infty$, a function $\varphi(x)$ infinitely differentiable in \mathbb{R}^n is said to belong to \mathcal{D}_{L^p} if $D^{\beta}\varphi(x) \in L^p(\mathbb{R}^n)$ for any $\beta \in \mathbb{N}^n$.