Double Cosine and Cosine-Sine Fourier Transforms and Generalized Lipschitz Classes in Uniform Metric

Authors

  • Sergey Volosivets
  • Yulia Krotova

DOI:

https://doi.org/10.4208/ata.OA-2022-0018

Abstract

For complex-valued functions $f \in L^1(\mathbb{R}^2_+)$, where $\mathbb{R}_+ := [0,\infty)$ we give
sufficient conditions under which the double cosine or cosine-sine Fourier transform of
$f$ belongs to a generalized Lipschitz class defined by the mixed modulus of smoothness
of orders $m,n \in \mathbb{N} = \{1,2,\cdots \}$ in uniform metric. The sharpness of these conditions
is established under some restriction for non-negative functions.

Published

2025-09-15

Abstract View

  • 164

Pdf View

  • 0

Issue

Section

Articles

How to Cite

Double Cosine and Cosine-Sine Fourier Transforms and Generalized Lipschitz Classes in Uniform Metric. (2025). Analysis in Theory and Applications. https://doi.org/10.4208/ata.OA-2022-0018