BMO Estimates for Multilinear Fractional Integrals
DOI:
https://doi.org/10.3969/j.issn.1672-4070.2012.03.002Keywords:
multilinear operator, fractional integral, rough kernel, BMO.Abstract
In this paper, the authors prove that the multilinear fractional integral operator $T_{\Omega,\alpha}^{A_1,A_2}$ and the relevant maximal operator $M_{\Omega,\alpha}^{A_1,A_2}$ with rough kernel are both bounded from $L^p$ $(1 < p < \infty)$ to $L^q$ and from $L^p$ to $L^{n/(n−\alpha),\infty}$ with power weight, respectively, where$$T_{\Omega,\alpha}^{A_1,A_2}(f)(x) =\int_{\mathbf{R}^n}\frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}}\Omega(x-y)f(y)dy$$and$$M_{\Omega,\alpha}^{A_1,A_2}(f)(x)= \sup_{r > 0}\frac{1}{r^{n−\alpha+m_1+m_2−2}}\int_{|x−y|
Published
2012-10-08
Abstract View
- 43850
Pdf View
- 4561
Issue
Section
Articles
How to Cite
BMO Estimates for Multilinear Fractional Integrals. (2012). Analysis in Theory and Applications, 28(3), 224-231. https://doi.org/10.3969/j.issn.1672-4070.2012.03.002