Two Weighted $BMO$ Estimates for the Maximal Bochner-Riesz Commutator

Authors

  • Dan Zou
  • Xiaoli Chen
  • Dongxiang Chen

DOI:

https://doi.org/10.4208/ata.2013.v29.n2.3

Keywords:

Bochner-Riesz operator, commutator, weighted $BMO(\omega)$ space.

Abstract

In this note, the author prove that maximal Bochner-Riesz commutator $B^b_{\delta,\ast}$ generated by operator $B_{\delta,\ast}$ and  function $b\in BMO(\omega)$ is a bounded operator from $L^{p}(\mu)$ into $L^{p}(\nu)$, where $\omega\in(\mu\nu^{-1})^{\frac{1}{p}},\mu,\nu\in A_p$ for $1 < p <\infty$. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator $B^b_{\delta,\ast}$.

Published

2013-06-05

Abstract View

  • 45453

Pdf View

  • 3916

Issue

Section

Articles

How to Cite

Two Weighted $BMO$ Estimates for the Maximal Bochner-Riesz Commutator. (2013). Analysis in Theory and Applications, 29(2), 120-127. https://doi.org/10.4208/ata.2013.v29.n2.3