Two Weighted $BMO$ Estimates for the Maximal Bochner-Riesz Commutator
DOI:
https://doi.org/10.4208/ata.2013.v29.n2.3Keywords:
Bochner-Riesz operator, commutator, weighted $BMO(\omega)$ space.Abstract
In this note, the author prove that maximal Bochner-Riesz commutator $B^b_{\delta,\ast}$ generated by operator $B_{\delta,\ast}$ and function $b\in BMO(\omega)$ is a bounded operator from $L^{p}(\mu)$ into $L^{p}(\nu)$, where $\omega\in(\mu\nu^{-1})^{\frac{1}{p}},\mu,\nu\in A_p$ for $1 < p <\infty$. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator $B^b_{\delta,\ast}$.
Downloads
Published
2013-06-05
Abstract View
- 45453
Pdf View
- 3916
Issue
Section
Articles
How to Cite
Two Weighted $BMO$ Estimates for the Maximal Bochner-Riesz Commutator. (2013). Analysis in Theory and Applications, 29(2), 120-127. https://doi.org/10.4208/ata.2013.v29.n2.3