Approximation of Generalized Bernstein Operators

Authors

  • X. R. Yang, C. G. Zhang & Y. D. Ma

DOI:

https://doi.org/10.4208/ata.2014.v30.n2.6

Keywords:

Bernstein type operator, Ditzian-Totik modulus, direct and converse approximation theorem.

Abstract

This paper is devoted to studying direct and converse approximation theorems of the generalized Bernstein operators $C_{n}(f,s_{n},x)$ via so-called unified modulus$\omega_{\varphi^{\lambda}}^{2}(f,t)$, $0\leq\lambda\leq1$. We obtain  main results as follows$$ \omega_{\varphi^{\lambda}}^{2}(f,t)=O(t^{\alpha})\Longleftrightarrow|C_{n}(f,s_{n},x)-f(x)|=\mathcal{O}\big((n^{-\frac{1}{2}}\delta_{n}^{1-\lambda}(x))^{\alpha}\big),$$where $\delta_{n}^{2}(x)=\max\{\varphi^{2}(x),{1}/{n}\}$ and $0<\alpha<2$.

Published

2014-06-05

Abstract View

  • 42225

Pdf View

  • 3906

Issue

Section

Articles

How to Cite

Approximation of Generalized Bernstein Operators. (2014). Analysis in Theory and Applications, 30(2), 205-213. https://doi.org/10.4208/ata.2014.v30.n2.6