Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators
DOI:
https://doi.org/10.4208/ata.OA-2017-0071Keywords:
Riesz transform, Schrödinger operator, commutator, Campanato space, Hardy space.Abstract
Let $\mathcal{L} = −∆+V$ be a Schrödinger operator on $\mathbb{R}^n(n ≥ 3)$, where the nonnegative potential $V$ belongs to reverse Hölder class $RH_{q_1}$ for $q_1 > \frac{n}{2}$. Let $H^p_{\mathcal{L}}(\mathbb{R}^n)$ be the Hardy space associated with $\mathcal{L}$. In this paper, we consider the commutator $[b,T_α]$, which associated with the Riesz transform $T_α = V^α(−∆+V)^{-\alpha}$ with $0<α≤ 1$, and a locally integrable function $b$ belongs to the new Campanato space $Λ^θ_β(ρ)$. We establish the boundedness of $[b,T_α]$ from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for $1
Downloads
Published
2018-11-14
Abstract View
- 46530
Pdf View
- 4376
Issue
Section
Articles
How to Cite
Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators. (2018). Analysis in Theory and Applications, 34(4), 306-322. https://doi.org/10.4208/ata.OA-2017-0071