Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators

Authors

  • Yueshan Wang & Yuexiang He

DOI:

https://doi.org/10.4208/ata.OA-2017-0071

Keywords:

Riesz transform, Schrödinger operator, commutator, Campanato space, Hardy space.

Abstract

Let $\mathcal{L} = −∆+V$ be a Schrödinger operator on $\mathbb{R}^n(n ≥ 3)$, where the nonnegative potential $V$ belongs to reverse Hölder class  $RH_{q_1}$ for $q_1 > \frac{n}{2}$. Let $H^p_{\mathcal{L}}(\mathbb{R}^n)$ be the Hardy space associated with $\mathcal{L}$. In this paper, we consider the commutator $[b,T_α]$, which associated with the Riesz transform $T_α = V^α(−∆+V)^{-\alpha}$ with $0<α≤ 1$, and a locally integrable function $b$ belongs to the new Campanato space $Λ^θ_β(ρ)$. We establish the boundedness of $[b,T_α]$ from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for $1

Published

2018-11-14

Abstract View

  • 46530

Pdf View

  • 4376

Issue

Section

Articles

How to Cite

Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators. (2018). Analysis in Theory and Applications, 34(4), 306-322. https://doi.org/10.4208/ata.OA-2017-0071