Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6
DOI:
https://doi.org/10.4208/ata.OA-2020-0044Keywords:
Sign-changing solutions, blow-up phenomenon, Lyapunov-Schmidt reduction, Transversality theorem.Abstract
We show that the classical Brezis-Nirenberg problem $$-\Delta u=u|u|+\lambda u \ \ \ \ \ \ \ in \ \ \ \Omega, \\ u=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ on \ \ \ \partial\Omega,$$ when $\Omega$ is a bounded domain in $\mathbb R^6$ has a sign-changing solution which blows-up at a point in $\Omega$ as $\lambda$ approaches a suitable value $\lambda_0>0.$
Published
2022-12-09
Abstract View
- 50446
Pdf View
- 4025
Issue
Section
Articles
How to Cite
Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6. (2022). Analysis in Theory and Applications, 38(1), 1-25. https://doi.org/10.4208/ata.OA-2020-0044