Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6

Authors

  • Angela Pistoia
  • Giusi Vaira

DOI:

https://doi.org/10.4208/ata.OA-2020-0044

Keywords:

Sign-changing solutions, blow-up phenomenon, Lyapunov-Schmidt reduction, Transversality theorem.

Abstract

We show that the classical Brezis-Nirenberg problem $$-\Delta u=u|u|+\lambda u \ \ \ \ \ \  \ in \  \ \  \Omega, \\ u=0   \  \  \   \  \  \   \  \ \ \ \  \ \ \ \  \  \ \  \  \ \    \  \ \ on \   \  \  \partial\Omega,$$ when $\Omega$ is a bounded domain in $\mathbb R^6$ has a sign-changing solution which blows-up at a point in $\Omega$ as $\lambda$ approaches a suitable value $\lambda_0>0.$

Published

2022-12-09

Abstract View

  • 50446

Pdf View

  • 4025

Issue

Section

Articles

How to Cite

Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6. (2022). Analysis in Theory and Applications, 38(1), 1-25. https://doi.org/10.4208/ata.OA-2020-0044