Precorrected-FFT Accelerated Singular Boundary Method for Large-Scale Three-Dimensional Potential Problems

Authors

  • Weiwei Li, Wen Chen & Zhuojia Fu

DOI:

https://doi.org/10.4208/cicp.OA-2016-0075

Abstract

This study makes the first attempt to accelerate the singular boundary method (SBM) by the precorrected-FFT (PFFT) for large-scale three-dimensional potential problems. The SBM with the GMRES solver requires $\mathcal{O}$($N^2$) computational complexity, where N is the number of the unknowns. To speed up the SBM, the PFFT is employed to accelerate the SBM matrix-vector multiplication at each iteration step of the GMRES. Consequently, the computational complexity can be reduced to $\mathcal{O}$($N$log$N$). Several numerical examples are presented to validate the developed PFFT accelerated SBM (PFFT-SBM) scheme, and the results are compared with those of the SBM without the PFFT and the analytical solutions. It is clearly found that the present PFFT-SBM is very efficient and suitable for 3D large-scale potential problems.

Published

2018-04-09

Abstract View

  • 42817

Pdf View

  • 3236

Issue

Section

Articles

How to Cite

Precorrected-FFT Accelerated Singular Boundary Method for Large-Scale Three-Dimensional Potential Problems. (2018). Communications in Computational Physics, 22(2), 460-472. https://doi.org/10.4208/cicp.OA-2016-0075