Sixth-Order Compact Finite Difference Method for 2D Helmholtz Equations with Singular Sources and Reduced Pollution Effect
DOI:
https://doi.org/10.4208/cicp.OA-2023-0062Keywords:
Helmholtz equation, finite difference, pollution effect, interface, pollution minimization, mixed boundary conditions, corner treatment.Abstract
Due to its highly oscillating solution, the Helmholtz equation is numerically challenging to solve. To obtain a reasonable solution, a mesh size that is much smaller than the reciprocal of the wavenumber is typically required (known as the pollution effect). High-order schemes are desirable, because they are better in mitigating the pollution effect. In this paper, we present a high-order compact finite difference method for 2D Helmholtz equations with singular sources, which can also handle any possible combinations of boundary conditions (Dirichlet, Neumann, and impedance) on a rectangular domain. Our method is sixth-order consistent for a constant wavenumber, and fifth-order consistent for a piecewise constant wavenumber. To reduce the pollution effect, we propose a new pollution minimization strategy that is based on the average truncation error of plane waves. Our numerical experiments demonstrate the superiority of our proposed finite difference scheme with reduced pollution effect to several state-of-the-art finite difference schemes, particularly in the critical pre-asymptotic region where $kh$ is near 1 with $k$ being the wavenumber and $h$ the mesh size.
Downloads
Published
Abstract View
- 35719
Pdf View
- 2736