On the Group of $p$-Endotrivial $kG$-Modules
DOI:
https://doi.org/10.13447/j.1674-5647.2018.02.02Keywords:
$p$-endotrivial module, the group of $p$-endotrivial modules, endo-permutation module, Dade groupAbstract
In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.
Downloads
Published
2019-12-16
Abstract View
- 37009
Pdf View
- 2756
Issue
Section
Articles
How to Cite
On the Group of $p$-Endotrivial $kG$-Modules. (2019). Communications in Mathematical Research, 34(2), 106-116. https://doi.org/10.13447/j.1674-5647.2018.02.02