Periodic Solutions for a Damped Rayleigh Beam Model with Time Delay
DOI:
https://doi.org/10.4208/cmr.2020-0015Keywords:
Beam equations, damping, time delay, periodic solutions.Abstract
Vibrations of a beam can be described as an Euler-Bernoulli beam, or as a Rayleigh beam or as a Timoshenko beam. In this paper, we establish the existence of periodic solutions in time for a damped Rayleigh beam model with time delay, which is treated as a bifurcation parameter. The main proof is based on a Lyapunov-Schmidt reduction together with the classical implicit function theorem. Moreover, we give a sufficient condition for a direction of bifurcation.
Downloads
Published
2020-07-30
Abstract View
- 43552
Pdf View
- 3167
Issue
Section
Articles
How to Cite
Periodic Solutions for a Damped Rayleigh Beam Model with Time Delay. (2020). Communications in Mathematical Research, 36(3), 296-319. https://doi.org/10.4208/cmr.2020-0015